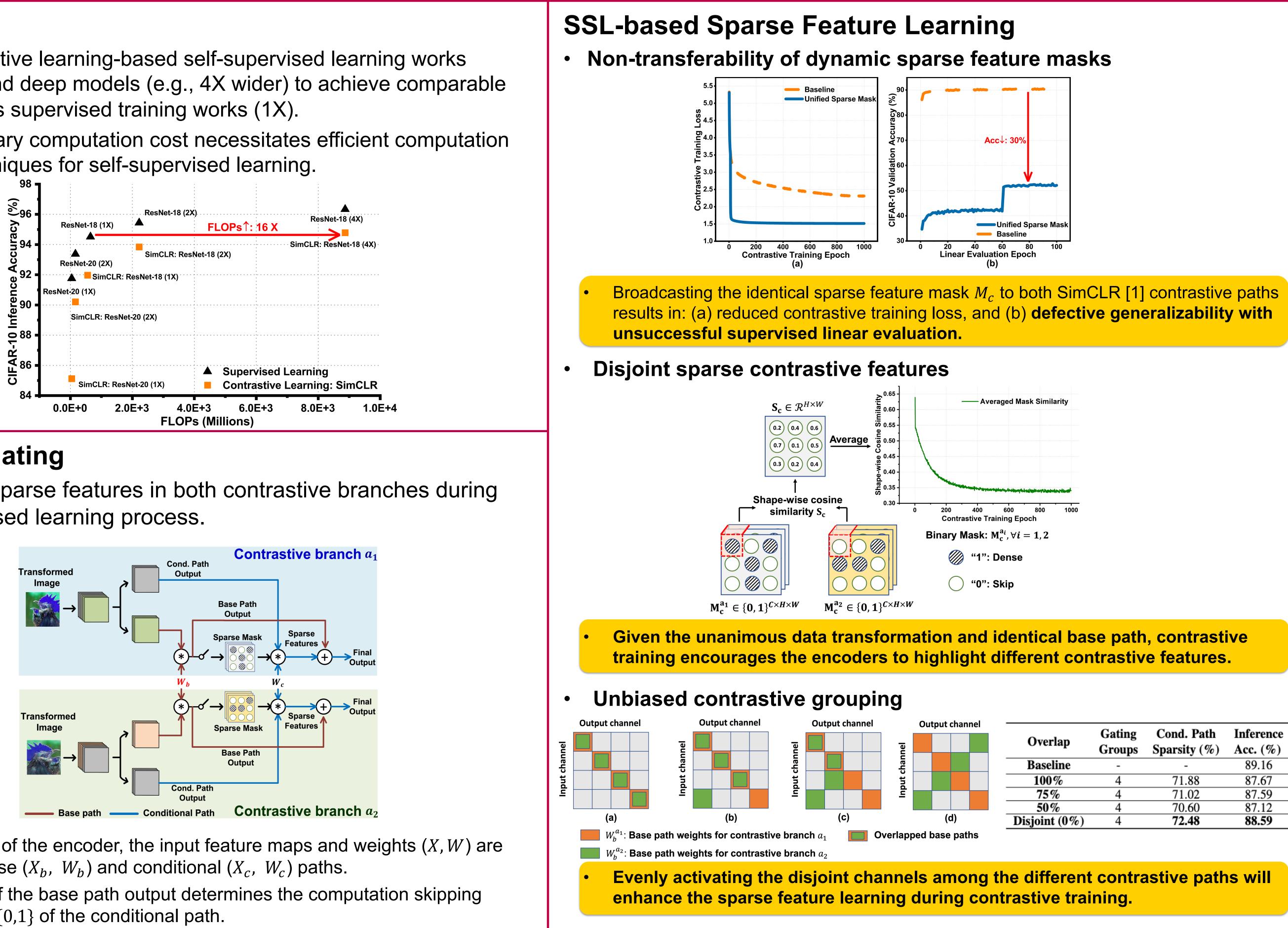


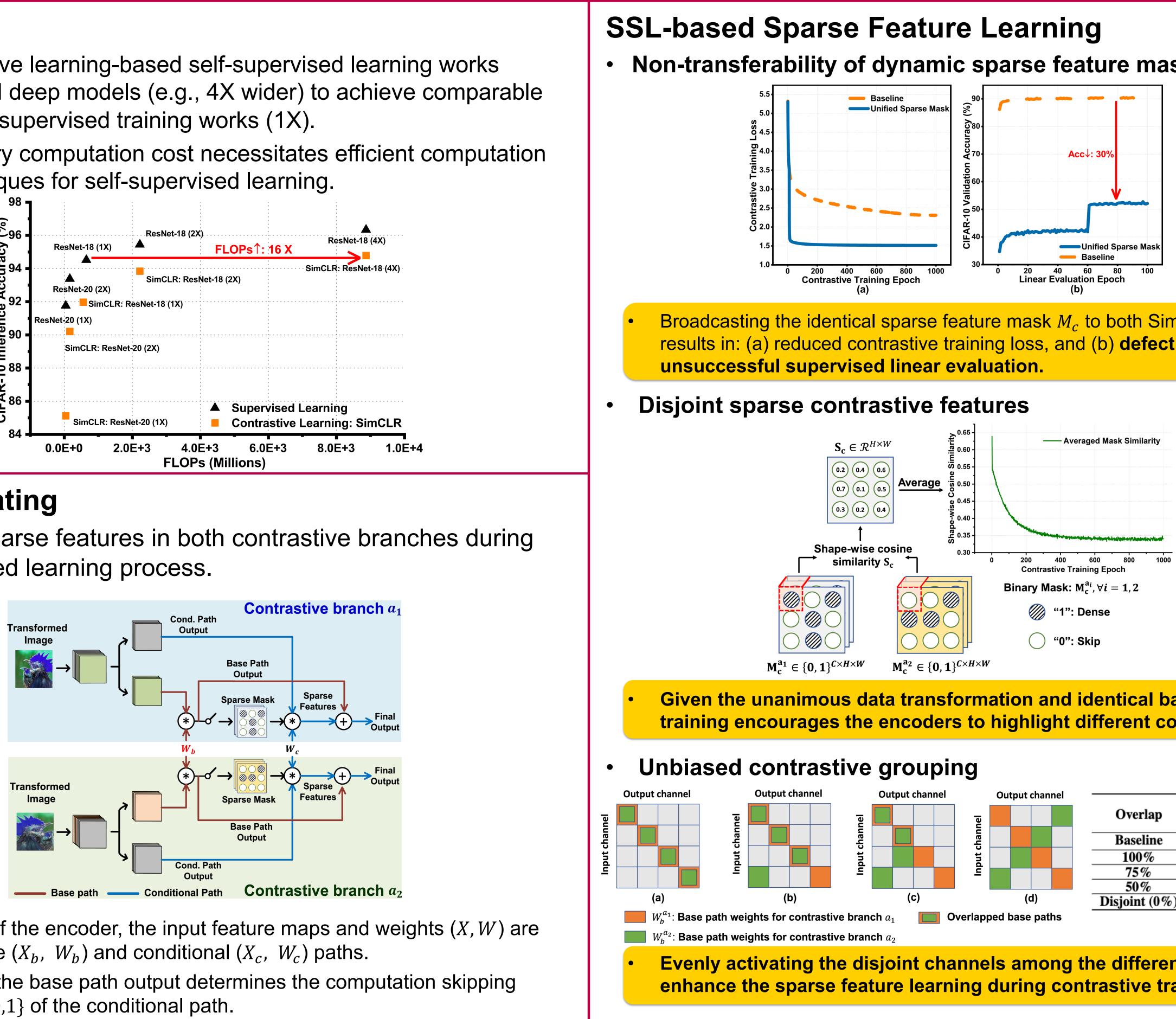
Introduction

- Recent contrastive learning-based self-supervised learning works require wide and deep models (e.g., 4X wider) to achieve comparable performance as supervised training works (1X).
- The extraordinary computation cost necessitates efficient computation reduction techniques for self-supervised learning.



Contrastive Gating

Learning the sparse features in both contrastive branches during the unsupervised learning process.



- For each layer of the encoder, the input feature maps and weights (X, W) are divided into base (X_b, W_b) and conditional (X_c, W_c) paths.
- The saliency of the base path output determines the computation skipping decision $M_c \in \{0,1\}$ of the conditional path.

[1] T. Chen et al., "A simple framework for contrastive learning of visual representations," ICML, 2020. [2] Z. Su et al., "Dynamic Channel Pruning: Feature Boosting and Suppression," ICLR, 2018.

Contrastive Dual Gating: Learning Sparse Features With Contrastive Learning ¹Jian Meng, ¹Li Yang, ²Jinwoo Shin, ¹Deliang Fan, ¹Jae-sun Seo

¹Arizona State University, USA

²KAIST, South Korea

Overlap	Gating Groups	Cond. Path Sparsity (%)	Inference Acc. (%)
Baseline	-	-	89.16
100%	4	71.88	87.67
75%	4	71.02	87.59
50%	4	70.60	87.12
Disjoint (0%)	4	72.48	88.59

Contrastive Dual Gating (CDG)

- masks $M_c^{a_1}$ and $M_c^{a_2}$ for both contrastive branches:

<u>Structured</u> Contrastive <u>Dual</u> Gating (SCDG)

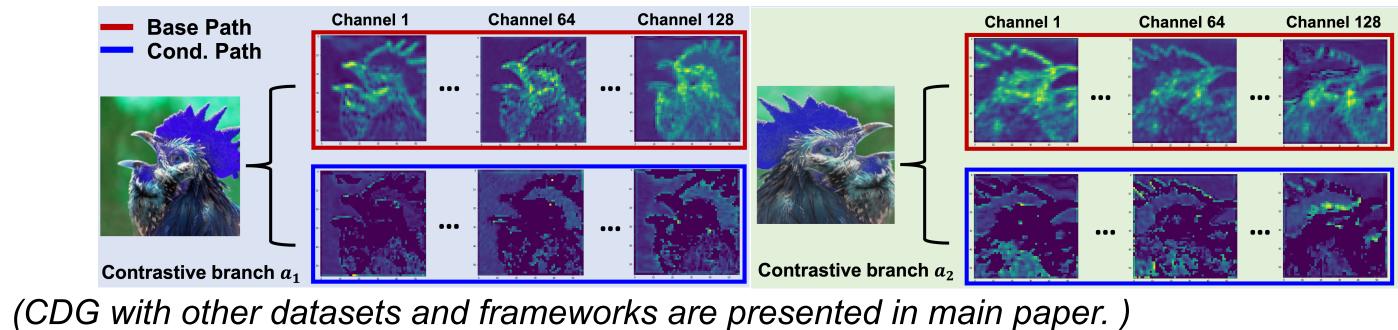
Experimental Results

degraded inference accuracy.

Method # of Gati Group		Linear Eval. Inference Accuracy (%)	Fine-tuning Inference Accuracy (%)	FLOPs Reduction	
This work (CDG_SimCLR)	4	88.84	90.74	2.12 ×	
FBS_SimCLR	-	86.91	88.89	2.00 imes	
DGC_SimCLR	4	73.10	81.77	$2.11 \times$	
CGNet_SimCLR	4	87.40	89.26	$2.09 \times$	

Model	# of Gating Groups	Dataset	Conditional Path Sparsity (%)	Inference Acc. (%)	Top-1 Acc. Drop	FLOPs Reduction	Index Reduction
ResNet-18 (1×)	4	CIFAR-10	71.64	90.37	-0.89	2.16×	$8 \times$
		CIFAR-100	66.24	65.94	-1.84	$1.98 \times$	$8 \times$
		ImageNet-100	45.52	76.63	-2.24	$1.53 \times$	$8 \times$

- conditional path only keeps the important edges.



During the forward pass of the contrastive training, CDG generates pruning

 $M_{c}^{a_{i}} = \sigma(\text{normalize}(X_{h}^{a_{i}} * W_{h}^{a_{i}}) - \tau)$

The contrastive branches are selected along the diagonal and inverse-diagonal of the channel groups. τ learns the gating decision during training.

During the forward pass of the contrastive training, SCDG generates structured pruning masks $M_c^{a_1}$ and $M_c^{a_2}$ based on the averaged salience: $M_{sc}^{a_i} = \sigma(\text{normalize}(\text{AvgPool}(X_h^{a_i} * W_h^{a_i})) - \tau)$

The widely-used mini-neural network-based auxiliary salience predictors (e.g., FBS [2], DGC [3]) are difficult to train from scratch, resulting in

Structured-CDG (SCDG) results with spatial feature group size = $8 \times 1 \times 1$

Similar accuracy as CDG with $8 \times$ sparse index reduction.

Base paths preserves the details with dense convolution, while the sparse